cohesive energy

英 [kəʊˈhiːsɪv ˈenədʒi] 美 [koʊˈhiːsɪv ˈenərdʒi]

网络  内聚能; 结合能; 凝聚能; 吸附能; 凝集能

电力



双语例句

  1. The attempt to calculate the cohesive energy of metals has scarcely been carried beyond the first column of the periodic table.
    计算金属结合能的尝试几乎没有超过周期表上的第一行的范围。
  2. Stability of crystal structures of metallic nanoparticles and their cohesive energy
    金属纳米微粒晶体结构的稳定性及其结合能
  3. Comparing the calculations of physical properties such as lattice constants, cohesive energy and bulk modulus by OA method and first-principle method, the result obtained by OA method is in excellent agreement with experimental value, but the result obtained by first-principle method is not accordable.
    由OA理论和第一原理方法计算的晶格常数、结合能、体弹性模量等物理参数进行比较,OA理论计算的结果与实验值较符合,而第一原理方法计算的结果与实验值相差较大;
  4. Structure and Cohesive Energy of Cu Clusters(ⅰ)& Application of Embedded Atom Method to Study of Metal Clusters
    铜团簇几何结构和结合能的半经验理论研究(Ⅰ)&嵌入原子法应用于金属团簇的理论研究
  5. Analysis of the Valence Electron Structure and Calculation of Cohesive Energy of Ni-Ti Alloys
    NITi合金的价电子结构分析及结合能计算
  6. Valence electronic structure analysis and cohesive energy calculation of MoSi_2
    MoSi2价电子结构分析及结合能计算
  7. The parameters of Morse potential are evaluated according to observed values of cohesive energy and bulk modulus.
    其中Morse势参数由内聚能和体积弹性模量的实验值确定。
  8. Calculation of the cohesive energy of metals by the Fermi-Thomas method
    用Fermi-Thomas方法计算金属的结合能
  9. Study on size and shape effects of lattice parameter and cohesive energy of Pd nanoparticles
    Pd纳米微粒的品格参数和结合能的尺寸形状效应研究
  10. The dependence of polymer cohesive energy density on temperature
    聚合物内聚能密度对温度的依赖性
  11. The calculated results were compared with the experimental ones, and the results show that the calculation of atomic volume and cohesive energy are in agreement with the experimental ones of TiAl metallic compound.
    计算结果表明,金属间化合物TiAl的平均原子体积和结合能与实验数据一致。
  12. The paper gived a formula for the calculating the cohesive energy.
    本文导出了一个计算晶体结合能的公式。
  13. The dependence of amorphous polymer cohesive energy density on temperature is studied.
    本文对无定形聚合物的内聚能密度的温度依赖性进行了研究。
  14. A formula has been derived to account for the melting temperature of free surface nanoparticles based on the relationship between the cohesive energy and the melting temperature of solids.
    根据熔解温度与结合能的关系,推导出了一个计算自由表面纳米微粒熔解温度的公式;
  15. A method to calculate the Morse potential of cubic metals according to golden section method from the observed values of cohesive energy and bulk modulus has been studied.
    讨论了根据内聚能和体积弹性模量实验值,用优选法中黄金分割法,计算立方金属Morse势的方法。
  16. New Method for Calculating Cold Energy, Cold Pressure and Cohesive Energy of Solids
    一种计算固体冷能、冷压和结合能的新方法
  17. Based on the bond energy model of nanoparticles and the relationship between cohesive energy and vacancy formation energy, the expressions for the vacancy formation energy and the vacancy density of nanoparticles have been derived.
    基于纳米微粒结合能的键模型,再根据结合能和空位形成能的关系,推导出了计算自由表面纳米微粒空位形成能和空位浓度的计算公式。
  18. A Prediction technique for gas permeability from polymer structure has been developed on the basis of free volume and molar cohesive energy.
    本文利用基团加和法,对20多种常见聚合物的自由体积和内聚能进行了计算。
  19. Statistical Thermodynamic Study on Cohesive Energy of Liquids
    液体内聚能的统计热力学研究
  20. The model parameters are determined by the experimental values of the cohesive energy, the elastic constants and the formation energy of a vacancy while the expressions about surface energy and surface stress are given.
    模型参数通过拟合结合能、弹性常数、空位形成能等实验值来确定,并给出了晶体表面能和表面应力的计算表达式。
  21. Block model and its application in researching crystal cohesive energy and elastic modulus are introduced. The relationship between structures and properties in high temperature superconductors is discussed.
    介绍了分块模型及其在研究晶体结合能、弹性模量中的应用,对铜氧化物高温超导体结构和性能之间的关系作了探讨。
  22. A simple but practical model for the melting and superheating of metallic nanocrystals was presented on the basis of Hill thermodynamic theory for small systems and our equivalent model for cohesive energy and corresponding melting thermodynamics.
    从Hill微系统热力学理论出发,根据已建立的金属纳米晶体结合能的等效模型与相应熔化热力学模型,建立了简单、实用的金属纳米晶体熔化与过热的等效模型。
  23. The effect of the content of chlorine in CPE on its glassy change temperature, cohesive energy density, solubility parameter and the physical-mechanical properties of CPE/ magnetic powder composite was studied by elementary analysis and DSC.
    通过元素分析和DSC测定研究了CPE的含氯量对其玻璃化转变温度、内聚能密度和溶解度参数、以及CPE/磁粉复合材料性能的影响。
  24. Especially, taking both σ and π orbitals into account, one electron energy levels, those symmetries and π orbital occupancies as well as electron excitation energies for different select rules, cohesive energy, ionization energies and electronic affinity forces were calculated.
    同时考虑σ-轨道和π-轨道,计算了一个电子能量级、对称性、π-轨道包含率、电子激发能量、凝聚能量、离子化能量以及电子亲和力。
  25. A model of the cohesive energy of liquids, which can be used to calculate the cohesive energy and solubility parameters of various liquids, has been established using a statistical thermodynamic method.
    用统计热力学方法建立了一个液体内聚能模型.它能用来计算各种液体的内聚能和溶解度参数。
  26. The results showed that the higher the chlorinity, the higher the Tg temperature of CPE, as well as the cohesive energy density and solubility parameter that had relation to intermolecular force;
    结果表明,含氯量越高的CPE其玻璃化转变温度也越高;与分子链间作用力有关的内聚能密度和溶解度参数也越大;
  27. A new solubility parameter thereby defined equals to the cohesive energy density of the liquid divided by the square root of internal pressure.
    据此,定义了1个新的溶解度参数,它等于液体的内聚能密度除以内压的开方根。
  28. The energy band, geometry parameters, density of states, and cohesive energy of CdSe with zinc blende structure, wurtzite structure, rock-salt structure, and CsCl structure are calculated, respectively.
    分别计算了闪锌矿结构,纤锌矿结构,岩盐结构和CsCl结构CdSe的能带、几何参数、电子态密度和内聚能。
  29. Both calculation results are consistent with the experimental values of the cohesive energy of Mo and W nanoparticles, and the results of bond model are more close to the experimental values.
    两种模型计算结果与Mo和W纳米微粒实验结果一致,但键模型的计算结果与实验值符合得更好。
  30. The results show that elongation at break is related to the flexibility of molecular chains, while tensile strength is depended on the cohesive energy.
    这是因为,断裂伸长率的变化与分子链的柔性密切相关,而抗拉强度则主要取决于大分子的内聚能密度。